- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Lingjun (1)
-
Riusech, Olga (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Crustaceans are particularly sensitive to copper toxicity, and although the downstream effects of increased copper exposure on the metabolome are often postulated and observed, they are rarely measured. To perform absolute quantification of hydrophilic small-molecule metabolites in the hemolymph of the crustacean Cancer borealis, we derivatized targeted metabolites related to copper toxicity using in-house-developed isotopic N,N-dimethyl leucine (iDiLeu) tags. Selected analytes were pooled at previously determined concentrations to serve as internal standards, and a calibration curve was generated. The sample loss was minimized by optimizing the derivatization-assisted sample cleanup using dispersive liquid–liquid microextraction (DLLME) and hydrophilic–lipophilic balancing (HLB). Calibration curves were then used for the absolute quantification of metabolites of interest following 30 min, 1 h, and 2 h exposures to 10 µM CuCl2. We found that glutamic acid was downregulated after 2 h of copper exposure, which may disrupt cellular metabolism and increase oxidative stress in crustaceans. These changes could have significant impacts on crustacean populations and the ecosystems they support.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
